3-Generator Groups Whose Elements Commute with Their Endomorphic Images Are Abelian
نویسندگان
چکیده
منابع مشابه
Minimal Number of Generators and Minimum Order of a Non-Abelian Group whose Elements Commute with Their Endomorphic Images
A group in which every element commutes with its endomorphic images is called an E-group. If p is a prime number, a p-group G which is an E-group is called a pE-group. Every abelian group is obviously an E-group. We prove that every 2-generator E-group is abelian and that all 3-generator E-groups are nilpotent of class at most 2. It is also proved that every infinite 3-generator E-group is abel...
متن کاملGroups whose proper quotients are virtually abelian
The just non-(virtually abelian) groups with non-trivial Fitting subgroup are classified. Particular attention is given to those which are virtually nilpotent and examples are given of the interesting phenomena that can occur.
متن کاملClassification of finite simple groups whose Sylow 3-subgroups are of order 9
In this paper, without using the classification of finite simple groups, we determine the structure of finite simple groups whose Sylow 3-subgroups are of the order 9. More precisely, we classify finite simple groups whose Sylow 3-subgroups are elementary abelian of order 9.
متن کاملOn the Finite Groups that all Their Semi-Cayley Graphs are Quasi-Abelian
In this paper, we prove that every semi-Cayley graph over a group G is quasi-abelian if and only if G is abelian.
متن کاملFinite groups all of whose proper centralizers are cyclic
A finite group $G$ is called a $CC$-group ($Gin CC$) if the centralizer of each noncentral element of $G$ is cyclic. In this article we determine all finite $CC$-groups.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Algebra
سال: 2008
ISSN: 0092-7872,1532-4125
DOI: 10.1080/00927870802160727